
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Facts About Water

- We have the same amount of water on earth today as we did when the earth was created.
- Of all the earth's water, 97.5% is salt water located in the oceans and seas.
- 2% of the earth's water is tied up in polar ice sheets in Antarctica and Greenland.
- Less than 1% of the earth's water is fresh water available for drinking, bathing, cleaning, cooking, manufacturing, and growing agricultural crops.
\qquad
\qquad

Facts About Water

$\lrcorner 61 \%$ of our drinking water in the U.S. comes from surface water supplies \qquad (streams, lakes, rivers) while 39\% comes from groundwater (underground \qquad aquifers)

- In Georgia, 75\% of our drinking water comes from surface water, while 25% comes from ground water.

Facts About Water
\lrcorner We only need about 15 gallons of water per day per person for drinking, bathing and cooking, yet per capita water consumption in the U.S. exceeds 100 gallons/day.

- If every household in the U.S. saved just 1 gallon of water a day, we would save 120 million gallons of water per day, enough water for a city the size of Jacksonville, FL.

Water Consumption Facts: How Thirsty is our Nation?

I It takes 800,000 gallons of water to grow one acre of cotton.

- It takes 35 gallons of water to grow, irrigate, process and cook 1 serving or rice.
- It takes 65 gallons of water to process 1 glass of milk.
- 39,000 gallons of water are used to manufacture a new car. \qquad
- One flush of a toilet uses as much water as the average person in the developing world uses in a whole day!

\qquad
\qquad

\qquad

Worldwide

One in Five people worldwide lack access to safe drinking water.

More than 2.2 million people, mostly in developing countries, die each year from diseases associated with poor water quality and sanitary conditions.

Worldwide

Worldwide renewable water resources available per person decreased by 50\% between 1960 and 1998.
Another 50\% reduction is projected by 2025.

In the United States, over twothirds of the population resides
in metropolitan areas.

In Georgia, over half of our state's population resides in just 24 of our 159 counties.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Water restrictions are imposed when demand exceeds 85% of the maximum daily pumping capacity.

Average residential water use increases 30\% - 50\% during the summer months when citizens turn on their outdoor irrigation systems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Water Conservation Measures

\lrcorner Summer Surcharge: Rate increases 25% to 100% when use exceeds average winter consumption.
\square Rationing: Odd/Even outdoor watering

- Bans on Outdoor Use
- EDUCATION
\qquad

Coined in Colorado

 in 1981(Pronomiced From the Greek Word "Xeros", which means dry

Seven Steps of Xeriscape

P Planning and Design

- Soill Analysis
- Appropríate Plant Selection
- Practical Turf Areas
- Efficient I rrigation
- Use of Mulches
- Appropriate Maintenance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Seven Steps of Xeriscape
\lrcorner Planning and Design

- Soil Analysis
- Appropriate Plant Selection
- Practical Turf Areas
\square Efficient I Irrigation
\ulcorner Use of Mulches
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Divide the Landscape into Three Water-use Zones
\square High Water-use Zone (Oasis Zone)

- Moderate Water-use Zone (Transition Zone)
- Low Watier-use Zone (Xeric Zone)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

High Water-use Zone (Oasis Zone)

Small] "high-impact" or high visibility area of the landscape where plants are provided their optimum water requirement at all time

Entrance to the home or business

Moderate Water-use Zone
(Transition Zone)
Plants are watered during establishment. Then, once established, they are watered only when they show signs of water stress.

Azaleas, dogwoods, redbuds, herbaceous perennials

Low Water-use Zone (Xeric Zone)
Once established, plants are provided
no supplemental irrigation, except
during periods of extreme drought
Juniper
Crape Myrtle
Yaupon Holly
Oaks
Native Areas

\qquad
\qquad
Once established, plants are provided no supplemental irrigation, except \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goal of Water Wise Landscapes
Reduce and minimize the sive of the area irrigated and the frequency of irrigation

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Seven Steps of Xeriscape

- Planning and Design

Soill Analysis

- Appropriate Plant Selection
- Practical Turf Areas
- Efficient Irrigation
\square Use of Mulches
\ulcorner Appropriate Maintenance

Don't Guess....Soil Test!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How Much Amendment to Use?
25% by Volume
3 inches incorporated to a 12 - inch depth
1 cu. yd. / 100 sq . ft. $=3 \mathrm{in}$. on soil surface
$1 \mathrm{cu} . \mathrm{yd} .=27 \mathrm{cu} . \mathrm{ft} .=$ Nine $3 \mathrm{cu} . \mathrm{ft}$. bags or $13-2 \mathrm{cu}$. ft. bags / 100 sq. ft.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Seven Steps of Xeriscape

- Planning and Design
- Soil Analysis
- Appropriate Plant Selection
- Practical Turf Areas
- Efficient I Irigation
\square Use of Mulches
Appropriate Maintenance \qquad
\qquad

Select Plants Adapted to the Site and the Stresses \qquad of the Environment \qquad
Drought tolerance is important, but also consider potential insect and disease problems, sunlight and soil requirements.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spirea \qquad
Mahonia \qquad
Dwarf Yaupon Holly

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Drought Tolerance of Turfgrasses

Hybrid Bermuda	Most
Zoysia	
Centipede	
Fescue	Least

For Help Selecting Adapted Plants

\lrcorner Visit your local nurseryman

- Contact your local county Extension office
- 1-800-ASK-UGA1
- Visit the following web site: www.ces.uqa.edu Click on Publications and Look for:
"Coping with Watering Restrictions in the Landscape" "Xeriscape: A Guide to Developing a Water Wise Landscape" "Landscape Plants for Georgia"
"Lawns in Georgia"

Plants Don't Save Water

> People Save Water !

Seven Steps of Xeriscape

- Planning and Design
- Soil Analysis
- Appropriate Plant Selection
- Practical Turf Areas
- Efficient Irrigation
\square Use of Mulches
\ulcorner Appropriate Maintenance

Use Turfigrass for a Purpose

\lrcorner Aesthetic Value (Welcome Mat)

- Recreational Surface
- Erosión Control

Minimize the amount of irrigated turfgrass

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recommended Number of Sheep per $3,000 \mathrm{sq}$, ft. of Lawn Area

Desired Height
\# of Sheep
1 - inch
2-inches
3-inches
1
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Seven Steps of Xeriscape

- Planning and Design
- Soil Analysis \qquad
- Appropriate Plant Selection
- Practical Turf Areas
- Efficient I rrigation
- Use of Mulches
\ulcorner Appropriate Maintenance

Adjust timers frequently according to changes in rainfall patterns

A low-cost rainfall sensor will prevent the irrigation system from running during rain

\qquad

```
Target irrigation to plants that
    show signns of stress
    - Gray/green Color
    - Wilcing
    - Dyíng Branches
    Use a hand-held hose with water breaker
    or sprinkler can to target irrigation to
        plants that need water
```

 Drip Irrigation
 Uses \(30 \%\) to \(50 \%\) less water than sprinkler irrigation
 Avoids spraying folíage so diseases are less likely to
 occur
 No spray drift
 Only need to
 water \(25 \%\) of
 the root area
 For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant. For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant. For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant. For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant. For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant. For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant. For most efficient use of water,
irrigate between 9 pm and 9 am to
avoid evaporative loss of water.
Avoid light, frequent irrigation
because it encourages shallow
rooting and increases water
demand of the plant.
\qquad

Seven Steps of Xeriscape

- Planning and Design
- Soil Analysis
- Appropriate Plant Selection
- Practical Turf Areas
- Efficient Irrigation
- Use of Mulches

Appropriate Maintenance

Benefilts of Mulch

- Prevents evaporative water loss from the soil
- Prevents soil-borne diseases
- Insulates the roots of plants from extreme heat and cold
- Reduces weed competition

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How Much Mulch To Apply?
3 to 5 inches is sufficient
1 bale of pine straw covers approximately 50 sq . ft.
$9-3 \mathrm{cu}$. ft. bags or $13-2 \mathrm{cu}$. ft. of bark mulch will cover 100 sq. ft. to a 3-inch depth

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Landscape fabrics under mulch helps prevent weeds and conserves moisture in the soil

Seven Steps of Xeriscape

- Planning and Design
- Soil Analysis
- Appropriate Plant Selection
- Practical Turf Areas
- Efficient I Irigation
- Use of Mulches
- Appropriate Maintenance

Avoid Frequent Flushes of Vegetative Growth Brought on by:
\sqcup Over-Fertilization

- Pruning
- Frequent I rrigation
\qquad

Fertilization

- Target fertillization to plants that need it. Established trees and shrubs may not need to be fertillized annually.
- Use slow-release forms of nitrogen (Urea formaldehyde, IBDU, Sulfur-coated urea)
- Use low rates of fertilizer
- Limit fertilization during dry periods

Too Much Nitrogen

\lrcorner Increases pest problems

- Increases top growth
\square Reduces root growth
- Increases pruning requirements
- Increases run-off into groundwater

Prume by selective thinning
instead of shearing

Grasscycling

Let the Clips F'all Where they May

Seven Steps of Xeriscape
\lrcorner Planning and Design
Soil Analysis
Appropriate Plant Selection

- Practical Turf Areas
- Efficient I rrigation
- Use of Mulches
- Appropriate Maintenance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
Water/Sewage Rates in
Athens/Clarke County
M-6
Water: $1.83/100 cu. ft.
Sewage: $1.41/100 cu. ft.
100 cu. Ft. x 7.45 = 745 gallons
    $1.83 = x
    745 gal. 1,000 gal.
```

 Water: \$2.46/1000 gallons Sewage: \$ 1.89/1000 gallons
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Projected Water Cost/1000 sq. ft.

Water Zone	Water Cost	Sewage Cost	Total Cost
High Water- use Zone	$\$ 53.14$	$\$ 40.82$	$\$ 93.96$
Moderate Water-use Zone	$\$ 23.62$	$\$ 18.14$	$\$ 41.76$

Potential Savings

Convert $1 / 3$ of a $1 / 2$ acre lot from High to Low Water Use,
SAVE \$588.18/yr.
Convert $1 / 3$ of a $1 / 2$ acre lot from Moderate
to Low Water Use,
SAVE \$266.42/yr.
Total Potential Savings: \$849.59/y. on water and sewage

> Comparative Cost of Converting 1000 sq . ft. of Irrigated Area to Mulch or Groundcover Plants
> Pine Straw @ $\$ 3 /$ bale
> 1 bale covers approx 50 sq . ft to a 3-inch depth 20 bales $/ 1000 \mathrm{sq}$. ft x $\$ 3 /$ bale $=\$ 60$

Asiatic Jasmine Groundcover @ 24-inch centers Liner plants ($21 / 4$-inch pots) @ \$0.75/pot 250 plants/1000 sq. ft. x $\$ 0.75 /$ plant $=\$ 187.50$
+20 bales of pine straw (2 -inch depth) @ \$3/bale = \$60
Total Cost $=\$ 247.50$

> Comparative Cost of Converting 1000 sq. ft. of Irrigated Area to Mulch or Groundcover Plants

Juniper Groundcover @ 4 ft . centers = 63 plants/ 1000 sq. ft.
63 plants @ \$4/plant = \$252

+ 20 bales of pinestraw @ \$3/bale=\$60 Total Cost =

| Comparative Cost of Converting 1000 sq. ft. of
 I rrigated Area to Mulch or Groundcover Plants |
| :---: | :---: |
| Pine Straw $\$ 60.00$
 Asiatic Jasmine $\$ 247.50$
 J uniper $\$ 312.00$
 Water + Sewage
 (high water-use zone) $\$ 93.96$ |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Xeriscape not only saves water...

It Saves Money!
gevelo pment I mpacts
on the Water Cycle

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Inhibit recharge of groundwater
- Prevent natural processing of pollutants in soil, plants
- Provide a surface for accumulation of pollutants
- Provide an express route for pollutants to waterways

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

I mportance of I nfiltration

\qquad which can solve the stormwater problem

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

