

Webster Defines Soil As.....

- The upper layer of the earth that may be dug or plowed and in which plants grow
- However, to soil scientists the definition is more complex
- It may have different meanings to different people

• All jobs rely on one of two industries – mining and agriculture. Every tangible thing our society needs is either pulled from the ground or grown from the ground. Without these fundamental industries there would be no jobs of any kind. There would be no economy. Civilization begins with miners and farmers, and polite society is only possible when skilled workers transform those raw materials into something useful or edible.

-Mike Rowe, Dirty Jobs (Discovery Channel)

Six Abiotic Factors

- Nutrients
- pH
- Water
- Oxygen
- Temperature
- Light

Note: Six Biotic Factors will be covered in other parts of the book and are outside the scope of today's lecture.

Essential Macronutrients

- Carbon (C), Hydrogen (H), Oxygen (O)
 Make up 94% of plant dry weight
- Primary Soil Nutrients:
 - Nitrogen (N), Phosphorus (P), Potassium (K)
 - Almost all soil N comes from atmosphere and must be combined with other elements for plants to use.
- Secondary Soil Nutrients:
 - Calcium (Ca), Magnesium (Mg), Sulfur (S)Epsom Salts for Mg?

N-P-K

- Nitrogen (N) \rightarrow UP!
- Phosphorus (P) \rightarrow DOWN!
- Potassium (K) \rightarrow All Around!
 - -K from Latin word kalium

Soil Micronutrients

- Boron (B), Copper (Cu), Manganese (Mn), Zinc (Zn), Iron (Fe), Molybdenum (Mo), and Chloride (Cl⁻)
- Just as important as macro-nutrients, but taken up in smaller amounts.
- Boron and Zinc are commonly of short supply in garden soils.
 - Usually due to high soil pH...
 - 1 tbsp. borax per 100 sq.ft.

Nutrient	Part of plant affected by nutrient deficiency	Symptoms	External circumstances leading to the nutrient deficiency
Nitrogen	Older foliage, going to whole plant Petioles (rare)	Pale green or yellow Red	Excessively leached or waterlogged soils, Soils with low organic matter
Phosphorus	Older Leaves Whole plant Petioles	Purpling, bronzing Stunting Red	Cold wet soils (early spring), acid or very alkaline soils, compacted soils
Potassium	Older Leaves. Leaf Margins.	Yellow translucent spots Browning	Soils with excessive leaching, high pH soils
Calcium	Roots	Thickened Stunted Withered or dead Collapse Blossom End Rot Tip Burn	Improper watering (most common cause), very acid soils, soils with excessive potassium, excessively dry or wet soils
Iron	Young leaves	Tissue between veins becomes pale or white	High pH soils, soils with low organic matter, high phosphorus, excess zinc, manganese or copper
Zinc	Young leaves Petioles	Pale or grayish, yellowing between veins; rosetted Weak	High pH, low organic matter, excess phosphorus in soil, lack of nitrogen
Manganese	Young leaves	Yellow mottled areas	Soils with pH over 6.5, high iron soils, low nitrogen soils, dry weather compacted soils
Magnesium	Interveinal space of older leaves; may begin around interior perimeter of leaf	Yellowing	Light acid soils, soils with excess potassium, calcium or phosphorus
Sulfur	Young leaves. Leaf Veins. Whole plant.	Yellowing Paler than rest of leaf Stunted, pale	Sandy soils, soils with low organic matter
Boron	Growing points Young leaves	Die back Yellowing, distorted, form unnatural rosettes	Soil pH under 5.5 or over 6.8, sandy soils with low organic matter lack of nitrogen
Copper	New shoots Young leaves Whole Plant	Do not open Yellowing, become thin Pale green	High pH soils, lack of nitrogen compacted soils
Molybdenum	Older leaves	Yellow, distorted, narrow	Soils with oH under 5.5

"Permanent" Soil Properties

- Texture
- Thickness of topsoil
- Thickness of subsoil
- Certain Chemical Properties

Changeable Soil Properties

- Soil Structure
- Soil Organic Matter
- Soil Color
- Soil pH (Acidity)
- Soil Nutrient Levels

SOIL TEXTURE

Soil Texture

- Soil texture refers to the relative proportions of sand, silt, and clay in a soil
- 12 textural classes
- Loam is considered to be ideal texture for growth of plants
- Difficult to alter soil texture on <u>large scale</u>

• In the field, texture is determined by "feel"

Importance of Soil Texture

• Influences pore size and pore space

- large pores air
- small pores water
- sandy soils have larger pores, less surface area, and water drains more freely compared to clay soils
- Influences a soils water holding capacity
 - fine textured soils have more and smaller pores
 - hold more water than <u>sandy soils</u>
 - also hold water more tightly

Soil Structure

- Manner in which soil particles are arranged together
- Particles in sandy soils may remain independent of each other
 - a.k.a. single grain texture
- Particles in fine textured soils are arranged in a definite manner to form stable <u>aggregates</u>—how soil particles clump or stick together.

Importance of Soil Structure

- Improves air & water relationships
- Improves root penetration
- Improves water infiltration
- Reduces erosion
- Ease of tillage
- Reduces crusting
- Affects soil drainage

Maintaining Soil Structure:

- Add Organic Matter
- Till Soil When Moist
 - Not Too Wet; Not Too Dry
- Grow Grasses
- Grow Cover Crops
 Keeps Soil <u>Protected</u> from Rain, etc.
- Restrict Traffic to avoid compaction

S	oil Compaction	
	Item	Pressure, Lb. Per Sq. Inch
Relative Compacting Effects of Soils by Different Agents	Man (150 pounds) Crawler Tractor Farm Tractor Cattle Trucks Rototiller (garden)	6 12 20 24 50 -100 107 - 750

Soils Vary in Clay and Humus Content

Half-Way Point

Organic Matter

- Improves soil physical condition
- Reduces erosion
- Improves water infiltration
- Improves water holding capacity
- Increases soil cation exchange capacity
- Source of nutrients

Organic Matter

• Contains varying amounts of all the essential nutrient elements

- e.g. ~ 5% Nitrogen

- Serves as important storehouse of elements such as nitrogen and sulfur
- Nutrient elements contained in freshly added organic matter are not immediately available to plants
- Residues must be decomposed into humus, and nutrients released in ionic form (+ or charge)

Humus Formation & Nitrogen Transformation

Regular Additions of Organic Residues Must Be Made to Maintain Soil Organic Matter Levels

6 Soil Microorganisms • Viruses • Bacteria (fixation) • Fungi/Algae

- Protozoa
- Nematodes
- Earthworms

	Clay Mineral	Exchange Capacity cmol(+)/kg	
S. GA)	Kaolinite & Sands	3-15	
	Montmorillonite	100-120	
	Vermiculite	100- 180	
(IL)	Illite & Silty Clay Loams	20-40	
	Organic Matter	200-400	

pH is a term used to describe the Hydrogen ion (H⁺) activity and/or concentration in solution

 $pH = -log(H^+)$

pH affects many reactions and activities that occur in soils

Soils Become Acid Because-

- Areas with high rainfall, result in:
 - a. leaching and plant uptake of base forming cations (Ca²⁺, Mg²⁺, and K⁺)
 - b. rapid reaction of water with Al & Fe, which produces H ions
- Application of acid forming fertilizers
- mostly those containing ammonical (NH₄⁺) nitrogen
- Decomposition of organic matter
- Microbial activity

Determining Soil pH & Limestone Requirement at UGA Laboratory

- Automated soil pH analyzer (130 samples can be analyzed per hour)
- Two analyzers operational gives the Lab capacity to analyze 260 samples/hour for pH and lime requirement
- Soil pH is recorded on <u>soil</u> <u>test report</u> along with the lime buffer capacity.

Desired pH 6.0 - 6.5

Desired pH for Some Crops								
5.0 – 5.5*	5.5 - 6.0*	6.0 - 6.5*						
Blueberries	Sweet Potatoes	Sweet Corn						
Irish Potatoes	Lawn Grasses	Tomatoes						
Azaleas	Annual Flowers	Onions						
Rhododendrons	Perennial Flowers	Cabbage						
	Spring Flowering Bulbs	Watermelon						
*pH _w Values								

Lime Sources and Their Relative Neutralizing Values

Liming Material	Relative Neutralizing Value*
Calcitic Limestone	85 – 100
Dolomitic Limestone (M	g) 95 - 108
Burned Lime	179
Hydrated Lime	120 - 135
Gypsum	None
*Calcium Carbonate is used as	a standard with a neutralizing

FREQUENCY AND RATE OF LIMING DEPENDS ON:

- SOIL pH
- SOIL TEXTURE
- NITROGEN FERTILIZATION RATES
- REMOVAL OF Ca AND Mg BY PLANTS
- AMOUNT OF LIME PREVIOUSLY APPLIED
- SOIL pH RANGE DESIRED

Acidifying Soils

 Acidifying soils is frequently required in nursery and horticultural situations.

Materials Used for Acidifying Soils

- Elemental sulfur
- Aluminum sulfate (Alum)
- Iron sulfate

Reducing Soil pH with Sulfur or Aluminum Sulfate

	Desired	d pH 5.5		Desired pH 6.0							
Initial		Textural Classification									
Soil pH _w	Sandy	Loamy	Clayey	Sandy	Loamy Claye						
		Sulfur Required, lbs per 1000 ft ^{2**}									
5.5	0	0	0								
6.0	4	10	16	0	0	0					
6.5	8	20	32	4	10	16					
7.0	12	29	47	8	20	32					
7.5	15	38	61	12	29	47					

**Aluminum sulfate rate = lbs. Sulfur x 6

Reducing Soil pH with Sulfur or Aluminum Sulfate

	Desire	d pH 4.5		De	esired pH	5.0					
Initial		Textural Classification									
Soil pH _w	Sandy	Loamy	Clayey	Sandy Loamy		Clayey					
		Sulfur Required, lbs per 1000 ft ^{2**}									
5.0	4	10	16	0	0	0					
5.5	8	20	32	4	10	16					
6.0	12	29	47	8	20	32					
6.5	15	38	61	12	29	47					
7.0	19	48	77	15	38	61					
7.5	23	57	92	19	48	77					

- Elemental sulfur and sulfur compounds are the most popular acidifying materials.
- Bacteria are required for this process to occur through oxidation.
- Bacteria are most active in warm soil.

$$-2S + 3O_2 + 2H_2O \rightarrow 2H_2SO_4$$
(Sulfate)
(Thiobacillus)

- Aluminum and iron sulfates can also be used
- These materials are very effective but are sometimes difficult to find
- They react quicker and do not require microbial oxidation
- Acidity is result of hydrolysis reaction:
 - $-Al_2(SO_4)_3 + 6H_2O \iff 2Al(OH)_3 + 6H^+ + 3SO_4^-$
 - $-Fe_2(SO_4)_3 + 6H_2O \iff 2Fe(OH)_3 + 6H^+ + 3SO_4^=$

The Fertilizer Bag Example: 16-4-8

- Numbers refer to percent by weight of nitrogen, phosphorous, potassium in the bag
- Example: 16-4-8 has 16% N, 4% P, 8% K

- 50 lb. bag = 8 lbs. N, 2 lbs. P, 4 lbs. K
- Nutrient sources also listed

Fertilizer Ratio 1-1-1 1-1-1 1-2-3 1-2-3 1-2-2	Example	Lbs. needed to	Lbs. applied with 1 lb. N		
Ratio	Grade	1000 sq.ft.	P_2O_6	K ₂ O	
1-1-1	8-8-8	12	1.00	1.00	
1-1-1	10-10-10	10	1.00	1.00	
1-2-3	5-10-15	20	2.00	3.00	
1-2-3	7-14-21	14	2.00	3.00	
1-2-2	6-12-12	17	2.00	2.00	
1-2-2	5-10-10	20	2.00	2.00	
3-1-2	12-4-8	8	0.30	0.60	
4-1-2	16-4-8	6	0.25	0.50	
1-0-1	15-0-15	7	0	1.00	
1-0-0	34-0-0	3	0	0	

of fertilizer needed to supply the recommended quantity of nitrogen. Therefore, from Table 1 6 pounds of 16-4-8 can be substituted for eight pounds of 12-4-8 or vice versa. Proper substitutions of other materials can also be calculated as shown before. When substituting fertilizers, remember to select a fertilizer grade that most nearly matches the grade recommended.

Pros/Cons of Organic Fertilizers

- Bulky (low nutrient content)
- Availability, odor, potential salt and weed seed hazards, expense per pound of nutrient
- Release nutrients over long period

 May need supplemental fertilizers in combination
- Beneficial effects on soil physical properties:
 - Improves structure, water infiltration, nutrient holding capacity, micronutrients

		Percent		
Materials	N	P ₂ O ₅	K ₂ O	Availability
Bone meal (steamed)	.7 to 4	18 to 34	0	Slow medium
Castor pomace	5	1.8	1	Slow
Cocoa shell meal	2.5	1	2.5	Slow
Compost (not fortified)	1.5 to 3.5	.5 to 1	1 to 2	Slow
Cottonseed meal (dry)	6	2.5	1.7	Slow mediur
Dried blood (dry)	12	1.5	.6	Medium rapi
Fertrell-Blue Label	1	1	1	Slow
Fertrell-Gold Label	2	2	2	Slow
Fertrell-Super	3	2	3	Slow
Fertrell-Super "N"	4	3	4	Slow
Fish meal (dry)	10	4	0	Slow
Fish scrap (dry)	3.5 to 12	1 to 12	.08 to 1.6	Slow
Garbage tankage(drv)	2.7	3	1	Very slow
Guano (bat)	5.7	8.6	2	Medium
Guano (Peru)	12.5	11.2	2.4	Medium
Kelp ²	.9	.5	4 to 13	Slow
Manure ³ (fresh)				
Cattle	.25	.15	.25	Medium
Horse	.3	.15	.5	Medium
Sheep	.6	.33	.75	Medium
Swine	.3	.3	.3	Medium
Poultry (75% water)	1.5	1	.5	Medium rapi
Poultry (50% water)	2	2	1	Medium rapi
Poultry (30% water)	3	2.5	1.5	Medium rapi
Poultry (15% water)	6	4	3	Medium rapi
Mari	0	2	4.5	Very slow
Milorganite (dry)	5	2 to 5	2	Medium
Mushroom compost	.4 to .7	.57 to .62	.5 to 1.5	Slow
Peat and muck	1.5 to 3	.25 to .5	.5 to 1	Very slow
Sawdust	4	2	4	Very slow
Sewage sludge (active dry)	2 to 6	3 to 7	0 to 1	Medium
Sewage sludge (digested)	1 to 3	.5 to 4	0 to .5	Slow
Soybean meal (dry)	6.7	1.6	2.3	Slow medium
Tanbark ⁴	0	1.5	2	Very slow
Tobacco stems(drv)	2	.7	6	Slow
Urea ⁵	42 to 46	0	0	Rapid

5 lbs 10-10-10 (for even analysis fertilizers)	33.3 lbs of compost (1.5-1-1.5) 33.0 lbs of 30% poultry manure (3-2.5-1.5) 50.0 lbs of OMRI approved fertilizer 1-1-1						
	Nitrogen Needed for 5 lbs of 10-10-10	Phosphorus Needed for 5 lbs of 10-10-10	Potassium Needed for 5 lbs of 10-10-10				
5 lbs 10-10-10 (using component fertilizers)	4.2 lbs blood meal 17.0 lbs alfalfa meal 8.3 lbs cotton seed meal 3.3 lbs feather meal 5.0 lbs fish meal 4.2 lbs fish meal 16.7 lbs cricket manure 7.5 lbs soybean meal	4.5 lbs bone meal 2.8 lbs colloidal phosphate	2.3 lbs Sul-Po-Mag 10.0 lbs greensand 16.6 lbs kelp				

The "Dirt" on Soils: Review

- Don't Guess! Soil Test!
 - Adjust soil pH per plant/soil needs
 - Fertilizer per plant needs
 - Apply fertilizer & lime accurately
 - Soil test every 2 years
- Add organic matter to improve soil structure
- Minimize soil compaction
- Minimize soil erosion! Soil is a limited natural resource...

Abiotic Factors: Future Problems

- <u>Temperature</u> extreme fluctuations with La Nina and El Nino weather patterns
- <u>Water</u> recurring droughts and floods
- <u>Nutrients</u> synthetic fertilizers are petroleum based and therefore a limited resource

Fertility Under Drought Conditions

- Grass growth is reduced during drought
- You don't want to try and push growth on drought-stressed grass, so fertilizer needs should be reduced
- Best to postpone fertilization or reduce
 amount applied
- Slow-release N is better, as it will pro more regulated growth
- Irrigate after applying fertilizers

CAES/FACS Extension Publications

• Over 1,000 free publications and fact sheets:

- Most can be accessed online: www.caes.uga.edu/publications/
- Clients that do not have computer access can get printed copies upon request

						Li	me Buffer	Capacit	y 1				/	
Soil [100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	140
pH			_		lb1	Ag lime	per acre	8" to rais	ie pH to 6	.0				
5.9	1000	1000	1000	1500	1500	2000	2000	2500	2500	3000	3000	3500	4000	400
5.8	1000	1000	1000	1500	1500	2000	2500	2500	3000	3500	3500	4000	4500	45
5.7	1000	1000	1000	1500	2000	2500	2500	3000	3500	3500	4000	4500	5000	500
5.6	1000	1000	1500	1500	2000	2500	3000	3500	3500	4000	4500	5000	5500	550
5.5	1000	1000	1500	2000	2500	3000	3000	3500	4000	4500	5000	5500	6000	650
5.4	1000	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	700
5.3	1000	1000	1500	2000	2500	3500	4000	4500	5000	5500	6000	6500	7000	750
5.2	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6500	7000	7500	80
5.1	1000	1500	2000	2500	3000	3500	4500	5000	5500	6000	6500	7500	8000	850
5.0	1000	1500	2000	2500	3500	4000	4500	5500	6000	6500	7000	8000	8500	900
4.9	1000	1500	2000	3000	3500	4000	5000	5500	6500	7000	7500	8500	9000	95
4.8	1000	1500	2500	3000	3500	4500	5000	6000	6500	7500	8000	9000	9500	100
4.7	1000	1500	2500	3000	4000	4500	5500	6000	7000	7500	8500	9500	10000	100
4.6	1000	1500	2500	3500	4000	5000	5500	6500	7500	8000	9000	9500	10000	100
4.5	1000	2000	2500	3500	4500	5000	6000	7000	7500	8500	9500	10000	10000	100
4.4	1000	2000	3000	3500	4500	5500	6500	7000	8000	9000	10000	10000	10000	100
4.3	1000	2000	3000	4000	4500	5500	6500	7500	8500	9500	10000	10000	10000	100
4.2	1000	2000	3000	4000	5000	6000	7000	8000	9000	9500	10000	10000	10000	100
4.1	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	10000	10000	10000	100
4.0	1000	2000	3500	4500	5500	6500	7500	8500	9500	10000	10000	10000	10000	100